2,778 research outputs found

    Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions

    Full text link
    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.Comment: 21 pages, 18 figures, accepted for publication in Ap

    Data-Driven Radiative Magnetohydrodynamics Simulations with the MURaM code

    Full text link
    We present a method of conducting data-driven simulations of solar active regions and flux emergence with the MURaM radiative magnetohydrodynamics (MHD) code. The horizontal electric field derived from the full velocity and magnetic vectors, is implemented at the photospheric (bottom) boundary to drive the induction equation. The energy equation accounts for thermal conduction along magnetic fields, optically-thin radiative loss, and heating of coronal plasma by viscous and resistive dissipation, which allows for a realistic presentation of the thermodynamic properties of coronal plasma that are key to predicting the observational features of solar active regions and eruptions. To validate the method, the photospheric data from a comprehensive radiative MHD simulation of solar eruption (the ground truth) are used to drive a series of numerical experiments. The data-driven simulation reproduces the accumulation of free magnetic energy over the course of flux emergence in the ground truth with an error of 3\%. The onset time is approximately 8\,min delayed compared to the ground truth. However, a precursor-like signature can be identified at the correct onset time. The data-driven simulation captures key eruption-related emission features and plasma dynamics of the ground truth flare over a wide temperature span from log10T=4.5\log_{10}T{=}4.5 to log10T>8\log_{10}T{>}8. The evolution of the flare and coronal mass ejection as seen in synthetic extreme ultraviolet images is also reproduced with high fidelity. The method helps to understand the evolution of magnetic field in a more realistic coronal environment and to link the magnetic structures to observable diagnostics.Comment: 35 pages, 24 figures, accepted for publication in Ap

    Magnetohydrodynamics of the Weakly Ionized Solar Photosphere

    Full text link
    We investigate the importance of ambipolar diffusion and Hall currents for high-resolution comprehensive ('realistic') photospheric simulations. To do so we extended the radiative magnetohydrodynamics code \emph{MURaM} to use the generalized Ohm's law under the assumption of local thermodynamic equilibrium. We present test cases comparing analytical solutions with numerical simulations for validation of the code. Furthermore, we carried out a number of numerical experiments to investigate the impact of these neutral-ion effects in the photosphere. We find that, at the spatial resolutions currently used (5-20 km per grid point), the Hall currents and ambipolar diffusion begin to become significant -- with flows of 100 m/s in sunspot light bridges, and changes of a few percent in the thermodynamic structure of quiet-Sun magnetic features. The magnitude of the effects is expected to increase rapidly as smaller-scale variations are resolved by the simulations.Comment: accepted Ap

    Polarimetry and the High-Energy Emission Mechanisms in Quasar Jets. The Case of PKS 1136-135

    Get PDF
    Since the discovery of kiloparsec-scale X-ray emission from quasar jets, the physical processes responsible for their high-energy emission have been poorly defined. A number of mechanisms are under active debate, including synchrotron radiation, inverse-Comptonized CMB (IC/CMB) emission, and other Comptonization processes. In a number of cases, the optical and X-ray emission of jet regions are inked by a single spectral component, and in those, high- resolution multi-band imaging and polarimetry can be combined to yield a powerful diagnostic of jet emission processes. Here we report on deep imaging photometry of the jet of PKS 1136-135 obtained with the {\it Hubble Space Telescope.} We find that several knots are highly polarized in the optical, with fractional polarization Π>30\Pi>30%. When combined with the broadband spectral shape observed in these regions, this is very difficult to explain via IC/CMB models, unless the scattering particles are at the lowest-energy tip of the electron energy distribution, with Lorentz factor γ1\gamma \sim 1, and the jet is also very highly beamed (δ20\delta \geq 20) and viewed within a few degrees of the line of sight. We discuss both the IC/CMB and synchrotron interpretation of the X-ray emission in the light of this new evidence, presenting new models of the spectral energy distribution and also the matter content of this jet. The high polarizations do not completely rule out the possibility of IC/CMB optical-to-X-ray emission in this jet, but they do strongly disfavor the model. We discuss the implications of this finding, and also the prospects for future work.Comment: 14 pages, 8 figures, ApJ in pres

    The theory of international business: the role of economic models

    Get PDF
    This paper reviews the scope for economic modelling in international business studies. It argues for multi-level theory based on classic internalisation theory. It present a systems approach that encompasses both firm-level and industry-level analysis

    Implications of Different Solar Photospheric Flux-Transport Models for Global Coronal and Heliospheric Modeling

    Full text link
    The concept of surface-flux transport (SFT) is commonly used in evolving models of the large-scale solar surface magnetic field. These photospheric models are used to determine the large-scale structure of the overlying coronal magnetic field, as well as to make predictions about the fields and flows that structure the solar wind. We compare predictions from two SFT models for the solar wind, open magnetic field footpoints, and the presence of coronal magnetic null points throughout various phases of a solar activity cycle, focusing on the months of April in even-numbered years between 2012 and 2020, inclusive. We find that there is a solar cycle dependence to each of the metrics considered, but there is not a single phase of the cycle in which all the metrics indicate good agreement between the models. The metrics also reveal large, transient differences between the models when a new active region is rotating into the assimilation window. The evolution of the surface flux is governed by a combination of large scale flows and comparatively small scale motions associated with convection. Because the latter flows evolve rapidly, there are intervals during which their impact on the surface flux can only be characterized in a statistical sense, thus their impact is modeled by introducing a random evolution that reproduces the typical surface flux evolution. We find that the differences between the predicted properties are dominated by differences in the model assumptions and implementation, rather than selection of a particular realization of the random evolution.Comment: Accepted for publication in The Astrophysical Journa
    corecore